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Abstract

Human motion modeling is very important for many modern graphic applications,
especially in the virtual reality scene. Creating the real human motion effect
plays a crucial role in the construction of the whole virtual scene. However, the
traditional human motion modeling method has a high threshold and is not easy for
more people to master and use. In order to eliminate such expertise barriers and
allow virtual reality technology to be developed more widely and deeply, recent
research has proposed that motion generation can be carried out through natural
language. However, it remains challenging to achieve diverse and fine-grained
motion generation with various text inputs. In this paper, we propose a method
to solve this problem. We take advantage of the diffusion model, a powerful
tool proposed by recent studies which has a powerful ability to understand natural
language and generate visual effects, to achieve interactive human motion modeling
through natural language as a medium.
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1 Introduction

Human motion modeling is a critical component of animating virtual characters to imitate vivid and
rich human movements, which has been a vital topic for many applications, such as film-making,
game development, and virtual YouTuber animation. To mimic human motions, virtual characters
should be capable of moving around naturally, reacting to environmental stimuli, and meanwhile
expressing sophisticated emotions. Despite decades of exciting technological breakthroughs, it
requires sophisticated equipment (e.g., expensive motion capture systems) and domain experts to
produce lively and authentic body movements. In order to remove skill prerequisites for layman users
and potentially scale to the mass audience, it is vital to create a versatile human motion generation
model that could produce diverse, easily manipulable motion sequences.

Overcoming these proficiency barriers and facilitating the widespread and extensive development of
virtual reality technology has become a focal point of recent research endeavors. One such proposal
suggests that motion generation can be accomplished through natural language, thereby eliminating
the need for specialized expertise. However, effectively achieving diverse and nuanced motion
generation based on a range of textual inputs remains a significant challenge that researchers continue
to tackle. The quest for generating motion that is both varied and intricately detailed in response to
different text descriptions persists as an active area of exploration.

To tackle this problem, we note that Diffusion Models, a type of generative models, which have been
gaining significant popularity in the past several years. We first warp the interaction of humans and
objects with specific representations and feed into diffusion pipeline, which applies Gaussian noises
to it and then denoise to recover the interactions. We train the diffusion by predicting the noise by a
designed neural network which takes the motions, text and objects information as inputs. What’s



more, we propose an extra temporal and interaction shared noise in diffusion models, which improves
the previous pipeline that only blindly adds noise and overlook the consistency constraints.

Overall, we propose our method InteractDiffuse which can successfully generate interactions among
humans and objects.

2 Related Works

2.1 Diffusion Models

This paper proposes a new motion generation pipeline based on the Denoising Diffusion Probabilistic
Model (DDPM) [1]. One of the principal advantages of DDPM is that the formation of the original
motion sequence can be retained. It means that we can easily apply more constraints during the
denoising process. In the later sections, we will explore more potential of DDPM in different types of
conditions. Besides, benefiting from this nature, DDPM can generate more diverse samples.

2.2 Conditional Intent Generation

The increasing maturity of various generative models stimulates researchers’ enthusiasm to study
conditional motion generation. Text-driven intent generation can be regarded as learning a joint
embedding of text feature space and intent feature space. [2] proposes an auto-regressive pipeline. It
first encodes language descriptions into features and then auto-regressively generates motion frames
conditioned on the text features. However, this method is hard to capture the global relation due to
the auto-regressive scheme. Moreover, the generation quality is inferior. Instead, [3] softly fuses text
features into generation and can yield the whole sequence simultaneously.

3 Method

3.1 Representation of interactiveness motion

3.1.1 Representation for Human-Object Interaction

Human-object interaction refers to the dynamic relationship between humans and objects in a given
context or environment. It encompasses the various ways in which humans interact, manipulate, and
engage with objects to achieve specific goals or perform tasks. To generate reasonable interaction
motion between human and object, we need better representions for them. Here, following [4], we
represent the human mesh using the SMPL-X parametric body model. SMPL-X parametrizes the
full human body along with the hands and the face as a differentiable function SMPLX(β, r, ϕ, t),
consisting of body shape parameters β ∈ R10, the root translation t ∈ R3, the axis-angle rotations
for the body joints r ∈ RJ×3 (J = 55), and the face expression parameters ϕ ∈ R10. It maps the
parameters to a body mesh with 10,475 vertices. To improve the stability and the convergence
characteristics of our model, we use the 6D continuous representations θ ∈ RJ×6to represent body
joint rotations. We downsample all the objects in the dataset to 300 vertices for faster optimization.
For object pose representation, we follow the traditional 6d pose representation. The object’s 6-DOF
pose is represented using a rotation matrix R ∈ R9 and a translation vector T ∈ R3.

3.1.2 Representation for Hand-Object Interaction

Hand-object interaction refers to the dynamic relationship between a human hand and an object
during manipulation or engagement. It involves the intricate coordination of the hand’s movements,
grasp, and manipulation actions to interact with and control objects in the surrounding environment.
To generate reasonable interaction motion between hand and object, we need to design great repre-
sentations. Here we adopt the solution from [5], and follow the MANO pose parameters which is
composed of 48 dimensions. That is, initial hand pose H0 ∈ R51 represented by the 48-dimensional
MANO pose parameters. For object representation, in addition to the 6D poses we described before,
we simplify the mesh structure in representation by sampling 1024 vertices and symbolize them by
vanilla X-Y-Z 3D coordinates.
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Figure 1: InteractDiffuse method overview.

3.1.3 Representation for Human-Human Interaction

As for Human-Human Interaction, which basically describe the dynamic exchange, communication,
and collaboration between individuals. It encompasses the diverse ways in which humans interact
with one another. Here we mainly focus on the human motion when interactions happen. Following
[6], we treat human as skeleton model in our representation, which is composed of k skeletons and the
action goes through totally T frames. We represent the action as a sequence P = {P1, P2, ..., PT },
where Pt ∈ R3×d and d = 3 × k. To be more specific, Pt = [J1(t), ..., Jk(t)] and Ji(t) =
[xi(t), yi(t), zi(t)]. The goal is to generate a reaction Y = {Y1, Y2, ..., YT } a sequence of skeleton
poses from X = {X1, X2, ..., XT } a sequence representing the action motion.

3.1.4 Overall Representations

Overall, we represents the interactions by the combination of three components: Human-Object,
Hand-Object and Human-Human Interaction. To be more specific, an interaction happens among
humans H and objects O, which can be represented as I = {I0, I1, ..., IT }, where Ii = (Ii,H , Ii,O)
with Ii,H = {Ii,h|h ∈ H} and Ii,O = {Ii,o|o ∈ O}. Ii,h = (Pi, SMPLX(βi, ri, ϕi, ti), Hi)
represents the human action at t frame and Ii,o = (R,T) represents the states of objects at t frame.

3.2 Interaction Diffusion Model

Following the literature on the diffusion model in the image synthesis field, we first build up a text-
conditioned motion generation pipeline using a denoising diffusion probabilistic model (DDPM). This
model is the basis of our proposed method. For the denoising process, we follow the Cross-Modality
Linear Transformer [3] to process input sequences conditioned on the given text prompts and objects
information. Beyond the direct application of text-driven motion generation, we take one step further
to explore methods that are conditioned on interaction representation during denoising. Specifically,
we experiment with Temporal Shared Noise in our proposed InteractDiffuse. We decouple the noise
into three parts: one shared among temporal dimension, one shared among interacting instances,
and one independent noise, to enhance the performance. The overall pipeline is shown in 1. We
introduce each part of this architecture in the following subsections.

3.2.1 Preliminary of DDPM

We build our text-driven motion generation pipeline based on denoising diffusion probabilistic model
(DDPM), or diffusion models. A probabilistic model is learned to gradually denoises a Gaussian
noise to generate a target output, such as a 2D image or 3D point cloud. Formally, diffusion models
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are formulated as pθ(x0) :=
∫
pθ(x0:T )dx1:T , where x0 ∼ q(x0) is the real data, and x1, x2, ..., xT

are the latent data. They generally have a diffusion process and a reverse process. To approximate
posterior q(x1:T |x0), the diffusion process follows a Markov chain to gradually add Gaussian noise
to the data until its distribution is close to the latent distribution N (0, I), according to variance
schedules given by βt. Instead of repeatedly adding noises on x0, we follow other works to formulate
the diffusion process as q(xt|x0) =

√
ᾱtx0 + ϵ

√
1− ᾱt with ϵ ∼ N (0, I). Hence, we can simply

sample a noise ϵ and then directly generate xt by this formulation. Instead of predicting xt−1, here
we predict the noise term ϵ.

3.2.2 Intent-Driven Interaction

We model the intent-driven motion generation as a conditional diffusion model, with intent as the
condition. The pipeline overview can be found in Fig. 1. To be more specific, we adopt a neural
network ϵθ(xt, t, text, objects), which is essential for denoising steps. Previous works mainly utilize
UNet-like structure as the denoising model. However, the target motion sequences are variable-length
in the motion generation task, making convolution-based networks unsuitable. Therefore, we follow
the Cross-Modality Linear Transformer, as shown in Fig. 1. Similar to the machine translation task,
our proposed model includes a text encoder and a motion decoder. To meet the requirement of the
diffusion models, we further customize each layer of the motion decoder. We introduce our design
for ϵθ(xt, t, text, objects) part by part.

Diffusion Model We adopt the mainstream diffusion model design and predict the noise term ϵ to
denoise. We optimize the model parameters to decrease a mean squared error as

L = Et∈[1,T ],x0∼q(x0),ϵ∼N (0,I)[||ϵ− ϵθ(xt, t, text, objects)||] (1)

Then we can denoise the motion sequence by estimating Σ(xt, t, text, objects) step by step and finally
get a clean motion sequence, which is conditioned on the given text and objects information.

Text Encoder Here we directly use classical transformer to extract text features. To enhance the
generalization ability, we use parameter weights in CLIP to initialize the first several layers. This part
of the parameters is frozen and will not be optimized in the later training.

Objects Encoder We represent objects in our interaction as meshes and sample vertices from them.
Then we integrate the objects meshes vertices and faces with 6D object pose into our object encoder
and generate corresponding encoding, prepared for being fed into the nerual network ϵθ.

Linear Self-attention and Cross-attention To simplify calculation of attention blocks in classical
Transformer blocks, here we adopt the improvement to the traditional self attention and cross attention
block, which boosts the time complextity to linear time. To be more specific, instead of calculating
pair-wise attention weights, efficient attention generates global feature map Fg ∈ Rdk×dk , where
dk is the dimension of feature after multi-head split. Then Cross-attention replaces X in K and V
calculation by the text feature.

With these components, we build up the basic InteractDiffuse system and it has already been with the
ability to generate good interactions between humans and objects. However, with the improvements
we propose in the next section, we can generate better interactions.

3.2.3 Temporal and Interaction Shared Noise

We propose the temporal shared noise to take into account the 1) temporal consistency and 2)
interaction consistency, two nature of the interactiveness motion, in designing the interaction diffusion
model. That is to say, unlike the traditional diffusion models that blindly apply noise into the input
data, we decouple the noise into three parts: one shared among temporal dimension, one shared
among interacting instances, and one independent noise, to enhance the performance.

To be more specific, we decouple the noise ϵ into three parts: ϵT , ϵI and ϵR. To satisfy the
requirements of diffusion model, we adopt extra techniques to maintain the distribution of the total
noise following the standard normal distribution. ϵT is the shared noise throughout the noise addition
procedure to force the temporal consistency. ϵI is shared noise of every interaction type, which is
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beneficial to keep interaction consistency. Finally a random ϵR which follows normal distribution is
applied. This process can be found in the pipeline Fig. 1.

3.3 Rendering the Results

For rendering results, we split it to three sub tasks: human-objects interactions rendering, hand-objects
interactions rendering and human-human interactions rendering.

We consider every interaction as a sequence of motions of meshes, represented as SMPL-X param-
eters and skeletons for human, MANO pose parameters for hands and 6D pose for objects with
corresponding meshes.

To render results, we first fix the position of cameras. Then after loading the generated interactions
from InteractMotion, we transform the representations of SMPL-X parameters, skeletons, MANO
pose parameters and 6D pose to the positions of vertices in the corresponding meshes. For more
diverse and continuous interactions, we interpolates among key frames to extend the interactions.
Finally, we render every frame separately and incorporate them together to videos.

4 Experiment

We split the interactions into three categories: Human-Objects Interactions, Hand-Objects Interactions
and Human-Human Interactions. We use different datasets and render interactions results for datasets
respectively.

4.1 Human-Objects Interactions

For Human-Objects Interactions, we choose Grab dataset [7], a dataset of Whole-Body human
grasping of objects, consisting of 1.3K sequences of human-object interactions exhibiting multiple
intents. We can take texts and objects information as input and generates interactions from our
model. We report three types of interactions: Eating Banana, Flying Planes, and Drinking from
Bowl. Specifically, we report different generated results of Drinking from Bowl from the same inputs.
The results can be found in Fig. 2. We choose four key frames from the generated video. From
the key frames photos, we can find that our InteractMotion can generate reasonable motions and
interactions of human and objects. What’s more, it can support various types of interactions and
generate interactions with high variance.

4.2 Hand-Objects Interactions

For Hand-Objects Interactions, we choose HOI4D dataset [8], a dataset concerning human object
interactions in 4D spatial-temporal space as a real-world dataset that contains dynamic HOM data
spanning various rigid and articulated object categories, but we focus on hands here. We can take
texts and objects information as input and generates interactions from our model. We report two types
of interactions: open a scissor and close a scissor. The results can be found in Fig. 3. We choose
four key frames from the generated video. We can find that in the frames we show in the table, the
hand-object interactions are quite reasonable and realistic. It proves that our model can generate
hand-objects interactions with high quality.

4.3 Human-Human Interactions

For Human-Human Interactions, we choose K3HI Dataset [9] and SBU dataset [10], two datasets
concerning human and human interactions in the representations of skeletons. SBU dataset contains
8 classes of simple interaction motions: walking toward, walking away, kicking, pushing, shaking
hands, hugging, exchanging, and punching while K3HI contains the same 8 classes as SBU aside from
the “hugging” class which is replaced by “pointing”. We can only take texts as input and generates
interactions from our model. We report four types of interactions: pointing, pushing, exchanging and
kicking. The results can be found in Fig. 4. We choose two key frames from the generated video. We
can see that in the representation of skeletons, the interactions among humans are realistic and with
high variance. It shows that our InteractMotion support various human-human interactions.
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Figure 2: Running results of InteractMotion with Grab Dataset We report three types of interac-
tions: Eating Banana, Flying Planes, and Drinking from Bowl.
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5 Conclusion

In this paper, we focus on human motion modeling, which is crucial for animating virtual characters
to mimic realistic and expressive movements. To address this problem, we utilize Diffusion Models, a
popular type of generative models. Our approach involves warping the interactions between humans
and objects using specific representations, which are then fed into a diffusion pipeline. In this pipeline,
Gaussian noises are applied to the representations and then denoised to recover the interactions. We
train the diffusion model by predicting the noise using a neural network that takes into account
motion, text, and object information. Additionally, we propose incorporating an additional temporal
and interaction shared noise into the diffusion models, which improves upon the previous method
that blindly adds noise and ignores consistency constraints. In summary, our method, InteractDiffuse,
effectively generates interactions between humans and objects.
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Figure 3: Running results of InteractMotion with HOI4D Dataset We report two types of
interactions: Opening the scissor and Closing the scissor.

O
pe

n
C

lo
se

Figure 4: Running results of InteractMotion with K3HI and SBU Dataset We report four types of
interactions: Pointing, Pushing, Exchanging and Kicking.
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